Al-Based porous coordination polymer derived nanoporous carbon for immobilization of glucose oxidase and its application in glucose/O2 biofuel cell and biosensor
نویسندگان
چکیده
Herein, we report the first example of using the Al-based porous coordination polymers (Al-PCP) as a template for preparation of nanoporous carbon through a two-step carbonized method. By applying the appropriate carbonized temperature in the first-step carbonization process, both high surface area and large pore volume are realized in the second-step carbonization process even at a hightemperature. The SEM images show that the carbonized Al-PCP before and after HF treatment (PCP) retained mostly crystallite shapes and sponge-like surface morphology. The TEM images of carbonized Al-PCP and PCP clearly exhibited high porosity with a wide range of pore sizes spanning from microto macropores. The maximum BET surface area and pore volume were 2773.5 m g 1 and 1.885 cm g , respectively. The obtained highly nanoporous carbon PCPs were used to modify a glassy carbon electrode (GCE) based on glucose oxidase (GOx), resulting in efficient direct electron transfer and excellent bio-catalytic performance. In addition, a glucose/O2 fuel cell constructed using Nafion/GOx/ PCP/GCE as the anode and an E-TEK Pt/C modified GCE as the cathode generated a maximum power density of 0.548 mW cm 2 at 0.41 V. The findings in this work may be helpful for exploiting novel nanoporous carbons derived from metal–organic framework (MOF) by using a two-step carbonization method for the immobilization of enzymes in enzymatic biofuel cells or biosensors.
منابع مشابه
Design and Fabrication of Glucose/O2 Enzymatic Biofuel Cell
Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...
متن کاملEnzyme Immobilization on Nanoporous Gold: A Review
Nanoporous gold (referred to as np-Au or NPG) has emerged over the past 10 years as a new support for enzyme immobilization. The material has appealing features of ease of preparation, tunability of pore size, high surface to volume ratio, and compatibility with multiple strategies for enzyme immobilization. The np-Au material is especially of interest for immobilization of redox enzymes for bi...
متن کاملImmobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor.
A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical perfor...
متن کاملImmobilization of Glucose oxidase on Meso-porous Glass-ceramic with the Skeleton of CaTi4(PO¬4)6
Microporous glass ceramic with skeleton of CaTi4(PO¬4)6 with average pore size of 12.7 nm has been synthesized and used as a carrier of glucose oxidase. The glass ceramic was prepared by controlled heat treatment of glass samples, which causes the phase separation in their structure and creates CaTi4(PO¬4)6 and β-Ca3(PO4)2 phases. The β-Ca3(PO4)2 phase was dissolved by soaking the glass ceramic...
متن کاملGlucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance
Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiol...
متن کامل